Diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez
.
En este artículo se propone una metodología para comparar diseños D-óptimos exactos cuando no se cumple el supuesto de incorrelación del término de error en el modelo y se tienen bajo consideración cuatro estructuras de covarianza para modelarlo. Se halla una expresión simplificada de la matriz de información de Fisher para el caso general de observaciones correlacionadas y se utiliza en las cuatro estructuras de covarianza consideradas. Con cada estructura de covarianza se halla el respectivo diseño óptimo, conocido como diseño nominal, y se evalúa la robustez de los otros diseños óptimos hallando la eficiencia de éstos con relación al diseño nominal. Se concluye que los cuatro diseños óptimos son competitivos con respecto a las otras estr... Ver más
1794-1237
2463-0950
19
2022-06-01
3807 pp. 1
16
Revista EIA - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1529 |
---|---|
record_format |
ojs |
spelling |
Diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez Optimum designs for nonlinear models with correlation structure: robustness study En este artículo se propone una metodología para comparar diseños D-óptimos exactos cuando no se cumple el supuesto de incorrelación del término de error en el modelo y se tienen bajo consideración cuatro estructuras de covarianza para modelarlo. Se halla una expresión simplificada de la matriz de información de Fisher para el caso general de observaciones correlacionadas y se utiliza en las cuatro estructuras de covarianza consideradas. Con cada estructura de covarianza se halla el respectivo diseño óptimo, conocido como diseño nominal, y se evalúa la robustez de los otros diseños óptimos hallando la eficiencia de éstos con relación al diseño nominal. Se concluye que los cuatro diseños óptimos son competitivos con respecto a las otras estructuras de covarianza consideradas, al observar una mínima pérdida de eficiencia de cada uno de estos diseños y mostrando que los diseños óptimos, al menos con las estructuras de covarianza consideradas, son robustos a la elección de la estructura de covarianza. Adicionalmente, se muestra, vía simulación, que, con los diseños óptimos, bajo cada estructura de covarianza se obtienen buenos estimadores para los parámetros del modelo al evaluar la magnitud del coeficiente de variación y el error cuadrático medio relativo. This article proposes a methodology to compare exact D-optimal designs when the assumption of incorrectness of the error term in the model is not fulfilled and four covariance structures are taken into consideration to model it. A simplified expression of the Fisher’s information matrix is found for the general case of correlated observations and is used in the four considered covariance structures. With each covariance structure, the respective optimal design is found, known as the nominal design, and the robustness of the other optimal designs is evaluated by finding their efficiency in relation to the nominal design. It is concluded that the four optimal designs are competitive with respect to the other considered covariance structures, by observing a minimal loss of efficiency of each of these designs and showing that the optimal designs, at least with the considered covariance structures, are robust to the choice of the covariance structure. Additionally, it is shown, via simulation, that, with the optimal designs, under each covariance structure, good estimators are obtained for the model parameters when evaluating the magnitude of the coefficient of variation and the relative mean square error. Correa Álvarez, Cristian David López-Ríos , Víctor Ignacio Matérn Function D-optimal Design Fisher's Information Matrix Robust Designs D-efficiency Correlated Observations Función de Matérn Diseño D-óptimo Matriz de Información de Fisher Diseños robustos D-eficiencia Observaciones Correlacionadas 19 38 Núm. 38 , Año 2022 : Tabla de contenido Revista EIA No. 38 Artículo de revista Journal article 2022-06-01 00:00:00 2022-06-01 00:00:00 2022-06-01 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1529 10.24050/reia.v19i38.1529 https://doi.org/10.24050/reia.v19i38.1529 spa https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 3807 pp. 1 16 Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19(6), 716-723, doi: 10.1109/TAC.1974.1100705. Amo, M., López-Fidalgo y López-Ríos, V. (2012). Optimal designs for two nested pharmacokinetic models with correlated observations, Communications in Statistics, 41(1), 944-963, doi: 10.1080/03610918.2012.625743. Atkinson, A., Donev, A. y Tobias, R. (2007). Optimum Experimental Designs with SAS, Oxford University Press, New York. Baran, S., Szák-Kocsis, C. y Stehlík, M. (2018). D-optimal designs for complex Ornstein–Uhlenbeck processes. Journal of Statistical Planning and Inference, 197, 93-106, doi: 10.1016/j.jspi.2017.12.006. Bates, D. y Watts, D. (1988). Nonlinear Regression Analysis and Its Applications, John Wiley & Sons, New York. Boukouvalas, A., Cornford, D. y Stehlík, M. (2014). Optimal design for correlated processes with input-dependent noise. Computational Statistics & Data Analysis, 71, 1088-1102, doi: 10.1016/j.csda.2013.09.024. Correa-Álvarez, C. D. (2015). Búsqueda de diseños cuasi-óptimos eficientes a partir de un diseño D-óptimo para observaciones correlacionadas espacialmente, tesis (Maestría en Estadística). Universidad Nacional de Colombia Sede Medellín. Dette, H., Kunert, J. y Pepelyshev, A. (2008). Exact optimal designs for weights least squares analysis with correlated errors, Statistica Sinica, 18, 135-154, from http://www.jstor.org/stable/24308249 Dette, H., Pepelyshev, A. y Zhigljavsky, A. (2013). Optimal design for linear models with correlated observations, The Annals of Statistics, 41(1), 143-176, doi: 10.1214/12-AOS1079. Dette, H., Pepelyshev, A. y Zhigljavsky, A. (2015). Design for linear regression models with correlated errors. In: Dean, A., Morris, M., Stufken, J., Bingham, D. (Eds.), Handbook of Design and Analysis of Experiments. Chapman & Hall/CRC, Boca Raton, pp. 237–278. Dette, H., Pepelyshev, A. y Zhigljavsky, A., (2016). Optimal designs in regression with correlated errors. Ann. Statist. 44, 113–152, doi: 10.1214/15-AOS1361. Fedorov, V. y Hackl, P. (1997). Model-Oriented Design of Experiments, Springer, New York. Kiefer, J. (1959). Optimum Experimental Designs, Journal of the Royal Statistical Society, 21(1), 272-319, doi: 10.1111/j.2517-6161.1959.tb00338.x. Liu, X., Yue, R. X. y Wong, W. K. (2018). D-optimal design for the heteroscedastic Berman model on an arc. Journal of Multivariate Analysis, 168, 131-141, doi: 10.1016/j.jmva.2018.07.003. López-Ríos, V. y Ramos-Quiroga, R. (2007). Introducción a los Diseños óptimos, Revista Colombiana de Estadística, 30(1), 37-51, https://www.redalyc.org/pdf/899/89930103.pdf. Matérn, B. (1960). Spatial Variation, Springer, New York. Müller, W. G., Pronzato, L., Rendas, J. y Waldl, H. (2015). Efficient prediction designs for random fields. Appl. Stochastic Models Bus. Ind., 31, 178-194. doi: 10.1002/asmb.2084. Pazman, A. (1986). Foundations of Optimum Experimental Design, D. Reidel Publishing Company, Dordrecht. Pazman, A. (2007). Criteria of optimal designs for small-samples experiments with correlated observations, Kybernetica, 43(4), 453-462, https://dml.cz/handle/10338.dmlcz/135787. R Core Team (2020). R: A language and environment for statistical, computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/. Rodríguez-Díaz, J. M., Santos-Martín, M. T., Waldl, H. y Stehlik, M. (2012). Filling and D-optimal designs for the correlated Generalized Exponential models. Chemometrics and Intelligent Laboratory Systems, 114, 10-18, doi: 10.1016/j.chemolab.2012.01.007. Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6(2), 461-464, doi: 10.1214/aos/1176344136. https://revistas.eia.edu.co/index.php/reveia/article/download/1529/1455 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez |
spellingShingle |
Diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez Correa Álvarez, Cristian David López-Ríos , Víctor Ignacio Matérn Function D-optimal Design Fisher's Information Matrix Robust Designs D-efficiency Correlated Observations Función de Matérn Diseño D-óptimo Matriz de Información de Fisher Diseños robustos D-eficiencia Observaciones Correlacionadas |
title_short |
Diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez |
title_full |
Diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez |
title_fullStr |
Diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez |
title_full_unstemmed |
Diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez |
title_sort |
diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez |
title_eng |
Optimum designs for nonlinear models with correlation structure: robustness study |
description |
En este artículo se propone una metodología para comparar diseños D-óptimos exactos cuando no se cumple el supuesto de incorrelación del término de error en el modelo y se tienen bajo consideración cuatro estructuras de covarianza para modelarlo. Se halla una expresión simplificada de la matriz de información de Fisher para el caso general de observaciones correlacionadas y se utiliza en las cuatro estructuras de covarianza consideradas. Con cada estructura de covarianza se halla el respectivo diseño óptimo, conocido como diseño nominal, y se evalúa la robustez de los otros diseños óptimos hallando la eficiencia de éstos con relación al diseño nominal. Se concluye que los cuatro diseños óptimos son competitivos con respecto a las otras estructuras de covarianza consideradas, al observar una mínima pérdida de eficiencia de cada uno de estos diseños y mostrando que los diseños óptimos, al menos con las estructuras de covarianza consideradas, son robustos a la elección de la estructura de covarianza. Adicionalmente, se muestra, vía simulación, que, con los diseños óptimos, bajo cada estructura de covarianza se obtienen buenos estimadores para los parámetros del modelo al evaluar la magnitud del coeficiente de variación y el error cuadrático medio relativo.
|
description_eng |
This article proposes a methodology to compare exact D-optimal designs when the assumption of incorrectness of the error term in the model is not fulfilled and four covariance structures are taken into consideration to model it. A simplified expression of the Fisher’s information matrix is found for the general case of correlated observations and is used in the four considered covariance structures.
With each covariance structure, the respective optimal design is found, known as the nominal design, and the robustness of the other optimal designs is evaluated by finding their efficiency in relation to the nominal design. It is concluded that the four optimal designs are competitive with respect to the other considered covariance structures, by observing a minimal loss of efficiency of each of these designs and showing that the optimal designs, at least with the considered covariance structures, are robust to the choice of the covariance structure. Additionally, it is shown, via simulation, that, with the optimal designs, under each covariance structure, good estimators are obtained for the model parameters when evaluating the magnitude of the coefficient of variation and the relative mean square error.
|
author |
Correa Álvarez, Cristian David López-Ríos , Víctor Ignacio |
author_facet |
Correa Álvarez, Cristian David López-Ríos , Víctor Ignacio |
topic |
Matérn Function D-optimal Design Fisher's Information Matrix Robust Designs D-efficiency Correlated Observations Función de Matérn Diseño D-óptimo Matriz de Información de Fisher Diseños robustos D-eficiencia Observaciones Correlacionadas |
topic_facet |
Matérn Function D-optimal Design Fisher's Information Matrix Robust Designs D-efficiency Correlated Observations Función de Matérn Diseño D-óptimo Matriz de Información de Fisher Diseños robustos D-eficiencia Observaciones Correlacionadas |
topicspa_str_mv |
Función de Matérn Diseño D-óptimo Matriz de Información de Fisher Diseños robustos D-eficiencia Observaciones Correlacionadas |
citationvolume |
19 |
citationissue |
38 |
citationedition |
Núm. 38 , Año 2022 : Tabla de contenido Revista EIA No. 38 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1529 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19(6), 716-723, doi: 10.1109/TAC.1974.1100705. Amo, M., López-Fidalgo y López-Ríos, V. (2012). Optimal designs for two nested pharmacokinetic models with correlated observations, Communications in Statistics, 41(1), 944-963, doi: 10.1080/03610918.2012.625743. Atkinson, A., Donev, A. y Tobias, R. (2007). Optimum Experimental Designs with SAS, Oxford University Press, New York. Baran, S., Szák-Kocsis, C. y Stehlík, M. (2018). D-optimal designs for complex Ornstein–Uhlenbeck processes. Journal of Statistical Planning and Inference, 197, 93-106, doi: 10.1016/j.jspi.2017.12.006. Bates, D. y Watts, D. (1988). Nonlinear Regression Analysis and Its Applications, John Wiley & Sons, New York. Boukouvalas, A., Cornford, D. y Stehlík, M. (2014). Optimal design for correlated processes with input-dependent noise. Computational Statistics & Data Analysis, 71, 1088-1102, doi: 10.1016/j.csda.2013.09.024. Correa-Álvarez, C. D. (2015). Búsqueda de diseños cuasi-óptimos eficientes a partir de un diseño D-óptimo para observaciones correlacionadas espacialmente, tesis (Maestría en Estadística). Universidad Nacional de Colombia Sede Medellín. Dette, H., Kunert, J. y Pepelyshev, A. (2008). Exact optimal designs for weights least squares analysis with correlated errors, Statistica Sinica, 18, 135-154, from http://www.jstor.org/stable/24308249 Dette, H., Pepelyshev, A. y Zhigljavsky, A. (2013). Optimal design for linear models with correlated observations, The Annals of Statistics, 41(1), 143-176, doi: 10.1214/12-AOS1079. Dette, H., Pepelyshev, A. y Zhigljavsky, A. (2015). Design for linear regression models with correlated errors. In: Dean, A., Morris, M., Stufken, J., Bingham, D. (Eds.), Handbook of Design and Analysis of Experiments. Chapman & Hall/CRC, Boca Raton, pp. 237–278. Dette, H., Pepelyshev, A. y Zhigljavsky, A., (2016). Optimal designs in regression with correlated errors. Ann. Statist. 44, 113–152, doi: 10.1214/15-AOS1361. Fedorov, V. y Hackl, P. (1997). Model-Oriented Design of Experiments, Springer, New York. Kiefer, J. (1959). Optimum Experimental Designs, Journal of the Royal Statistical Society, 21(1), 272-319, doi: 10.1111/j.2517-6161.1959.tb00338.x. Liu, X., Yue, R. X. y Wong, W. K. (2018). D-optimal design for the heteroscedastic Berman model on an arc. Journal of Multivariate Analysis, 168, 131-141, doi: 10.1016/j.jmva.2018.07.003. López-Ríos, V. y Ramos-Quiroga, R. (2007). Introducción a los Diseños óptimos, Revista Colombiana de Estadística, 30(1), 37-51, https://www.redalyc.org/pdf/899/89930103.pdf. Matérn, B. (1960). Spatial Variation, Springer, New York. Müller, W. G., Pronzato, L., Rendas, J. y Waldl, H. (2015). Efficient prediction designs for random fields. Appl. Stochastic Models Bus. Ind., 31, 178-194. doi: 10.1002/asmb.2084. Pazman, A. (1986). Foundations of Optimum Experimental Design, D. Reidel Publishing Company, Dordrecht. Pazman, A. (2007). Criteria of optimal designs for small-samples experiments with correlated observations, Kybernetica, 43(4), 453-462, https://dml.cz/handle/10338.dmlcz/135787. R Core Team (2020). R: A language and environment for statistical, computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/. Rodríguez-Díaz, J. M., Santos-Martín, M. T., Waldl, H. y Stehlik, M. (2012). Filling and D-optimal designs for the correlated Generalized Exponential models. Chemometrics and Intelligent Laboratory Systems, 114, 10-18, doi: 10.1016/j.chemolab.2012.01.007. Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6(2), 461-464, doi: 10.1214/aos/1176344136. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2022-06-01 |
date_accessioned |
2022-06-01 00:00:00 |
date_available |
2022-06-01 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1529 |
url_doi |
https://doi.org/10.24050/reia.v19i38.1529 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v19i38.1529 |
citationstartpage |
3807 pp. 1 |
citationendpage |
16 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1529/1455 |
_version_ |
1811200524497715200 |