Titulo:

Proteínas importantes para la invasión de Babesia bovis a las células huésped
.

Sumario:

Introducción. La babesiosis bovina es causada por parásitos Apicomplexa del género Babesia, siendo Babesia bovis la especie asociada con cuadros clínicos más graves de la enfermedad. La invasión de B. bovis a los eritrocitos bovinos implica la interacción entre moléculas de los merozoítos del parásito con receptores de las células huésped. Por ende, conocer las proteínas involucradas en este proceso supone un importante paso para entender la biología del parásito. Objetivo. Describir las principales moléculas implicadas en el proceso de invasión de B. bovis a eritrocitos bovinos. Metodología. Se realizó una búsqueda en NCBI, Medline, LILACS y SciELO usando los términos: “Babesia bovis AND invasion process”, “MSA-1”, “RON2”, “AMA-1”, “moving... Ver más

Guardado en:

2389-7325

2539-2018

8

2021-02-05

75

90

Revista Investigación en Salud Universidad de Boyacá - 2021

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_uniboyaca_revistainvestigacionensaluduniversidaddeboyaca_0_article_475
record_format ojs
spelling Proteínas importantes para la invasión de Babesia bovis a las células huésped
Important proteins for Babesia bovis invasion to host cells
Introducción. La babesiosis bovina es causada por parásitos Apicomplexa del género Babesia, siendo Babesia bovis la especie asociada con cuadros clínicos más graves de la enfermedad. La invasión de B. bovis a los eritrocitos bovinos implica la interacción entre moléculas de los merozoítos del parásito con receptores de las células huésped. Por ende, conocer las proteínas involucradas en este proceso supone un importante paso para entender la biología del parásito. Objetivo. Describir las principales moléculas implicadas en el proceso de invasión de B. bovis a eritrocitos bovinos. Metodología. Se realizó una búsqueda en NCBI, Medline, LILACS y SciELO usando los términos: “Babesia bovis AND invasion process”, “MSA-1”, “RON2”, “AMA-1”, “moving junction”, “B. bovis AND Vaccine candidates”. 61 publicaciones disponibles en inglés que describen el estudio de las anteriores proteínas y su participación en la invasión los cuales han sido publicados hasta mayo 2020 se revisaron completamente. Resultados: Siendo el proceso de invasión a eritrocitos bovinos clave para la patogénesis de la babesiosis bovina, se hizo una revisión donde se encontraron 3 proteínas de B. bovis que participan en el reconocimiento e invasión a las células diana: MSA-1, AMA-1 y RON2. Sin embargo, los detalles a nivel molecular para las interacciones inter e intramoleculares aún no se han dilucidado por completo. Conclusiones. Conocer las moléculas involucradas en las interacciones parásito-hospedero permitirá comprender cómo ocurre el proceso de invasión de B. bovis a los eritrocitos y así evaluar su futura utilidad como componente de una estrategia de control efectiva contra esta parasitosis.
Introduction. Bovine babesiosis is caused by Apicomplexas parasites of the genus Babesia, Babesia bovis being the species associated with the most serious clinical conditions of the disease. B. bovis invasion into the bovine erythrocytes involves the interaction between the parasites merozoites molecules with host cell receptors. Therefore, knowing the proteins involved in the invasion process will enable understanding the parasite biology. Objective. To describe the important molecules involved in the B. bovis invasion process to bovine erythrocytes. Methodology. A search was made on NCBI, Medline, LILACS and SciELO databases using keywords as “Babesia bovis AND invasion process”, “MSA-1”, “RON2”, “AMA-1”, “moving junction”, “B. bovis AND Vaccine candidates”. 61 studies written in English describing the study for proteins that take place during invasion process which have been published until mayo were completely revised. Results. Given that the bovine erythrocyte invasion process is key for the pathogenesis of bovine babesiosis, a review was made where 3 proteins were found to be associated to the recognition and invasion processes of target cells: MSA-1, AMA-1 and RON2. However, the details at molecular level for the inter an intramolecular interaction have not yet been fully elucidated. Conclusions. Study the molecules involved in host-parasite interactions will allow understanding how the B. bovis invasion process to erythrocytes occurs and evaluating their future utility as a component of an effective control strategy for this parasitosis.
Cuy Chaparro, Laura Esperanza
Camargo Mancipe, Anny
Gómez Rodríguez, Alida Marcela
Reyes Santofimio, César
Moreno Pérez, Darwin Andrés
Babesia bovis
Babesiosis
interacciones huésped-parásito
proteínas
control de infección
Babesia bovis
babesiosis
host-parasite interactions
proteins
infection control
Babesia bovis
babesiose
interações parasita-hospedeiro
proteínas
controle de infecção
8
1
Núm. 1 , Año 2021 : Revista Investigación en Salud Universidad de Boyacá
Artículo de revista
Journal article
2021-02-05T00:00:00Z
2021-02-05T00:00:00Z
2021-02-05
application/pdf
Universidad de Boyacá
Revista Investigación en Salud Universidad de Boyacá
2389-7325
2539-2018
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/475
10.24267/23897325.475
https://doi.org/10.24267/23897325.475
spa
http://creativecommons.org/licenses/by-nc/4.0
Revista Investigación en Salud Universidad de Boyacá - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
75
90
Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129(7):S247-69. https://doi.org/10.1017/S0031182004005190
Lew-Tabor AE, Rodriguez ValleM. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick-Borne Dis. 2016;7(4):573-85. https://doi.org/10.1016/j.ttbdis.2015.12.012
Hunfeld K, Hildebrandt A, Gray J. Babesiosis: Recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219-37. https://doi.org/10.1016/j.ijpara.2008.03.001.
Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180(1-2):109-25. https://doi.org/10.1016/j.vetpar.2011.05.032.
Ishizaki T, Sivakumar T, Hayashida K, Tuvshintulga B, Igarashi I, Yokoyama N. RBC invasion and invasion-inhibition assays using free merozoites isolated after cold treatment of Babesia bovis in vitro culture. Exp Parasitol. 2016;166:10-5. https://doi.org/10.1016/j.exppara.2016.03.010.
Nava A, Venzal J, González-Acuña D, Martins T, Guglielmone A. Ticks of the Southern Cone of America. Diagnosis, Distribution, and Hosts with Taxonomy, Ecology and Sanitary Importance. Academic Press.2017. 372.
Martinsen ES, Perkins SL, Schall JJ. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol Phylogenet Evol. 2008;47(1):261-73. https://doi.org/10.1016/j.ympev.2007.11.012.
Lobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion: Curr Opin Hematol. 2012;19(3):170-5. https://doi.org/10.1097/moh.0b013e328352245a.
Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37. https://doi.org/10.1051/vetres/2009020.
Hidalgo-Ruiz M, Suarez CE, Mercado-Uriostegui MA, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, etal. Babesia bovis RON2 contains conserved B-cell epitopes that induce an invasion-blocking humoral immune response in immunized cattle. Parasit Vectors. 2018;11(1):575. https://doi.org/10.1186/s13071-018-3164-2
Kwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ. A widespread coral-infecting apicomplexan contains a plastid encoding chlorophyll biosynthesis. bioRxiv. 2018; https://doi.org/10.1101/391565
Dubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN. Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol. 1998;28(7):1007-13. https://doi.org/10.1016/S0020-7519(98)00076-9.
Yokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: Current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol. 2006;138(1-2):22-32. https://doi.org/10.1016/j.vetpar.2006.01.037.
Bargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog. septiembre de 2014;10(9):e1004273. https://doi.org/10.1371/journal.ppat.1004273.
Proellocks NI, Coppel RL, Waller KL. Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol.2010;26(6):297-304. https://doi.org/10.1016/j.pt.2010.02.012.
Tyler JS, Treeck M, Boothroyd JC. Focus on the ringleader: the role of AMA1 in apicomplexan invasion and replication. Trends Parasitol. 2011;27(9):410-20. https://doi.org/10.1016/j.pt.2011.04.002.
Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, etal. Proteomic Analysis of Rhoptry Organelles Reveals Many Novel Constituents for Host-Parasite Interactions in Toxoplasma gondii. J Biol Chem. 2005;280(40):34245-58. https://doi.org/10.1074/jbc.M504158200.
Morrissette NS, Sibley LD. Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev MMBR. 2002;66(1):21-38.https://doi.org/10.1128/MMBR.66.1.21-38.2002.
Portman N, Foster C, Walker G, Šlapeta J. Evidence of intraflagellar transport and apical complex formation in a free-living relative of the apicomplexa. Eukaryot Cell. 2014;13(1):10-20. https://doi.org/10.1128/EC.00155-13.
Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol. 1997;73(2):114-23.
Bradley PJ, Sibley LD. Rhoptries: an arsenal of secreted virulence factors. Curr Opin Microbiol. 2007;10(6):582-7. https://doi.org/10.1016/j.mib.2007.09.013.
Woehlbier U, Epp C, Hackett F, Blackman MJ, Bujard H. Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion. Malar J. 2010;9:77. https://doi.org/10.1186/1475-2875-9-77.
Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, etal. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc NatlAcad Sci U S A. 2011;108(32):13275-80. https://doi.org/10.1073/pnas.1110303108.
Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, etal. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog. 2011;7(2):e1001276. https://doi.org/10.1371/journal.ppat.1001276.
Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, Vial H, etal. The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol. 2005;7(12):1823-33. https://doi.org/10.1111/j.1462-5822.2005.00646.x.
Shen B, Sibley LD. The moving junction, a key portal to host cell invasion by apicomplexan parasites.Curr Opin Microbiol. 2012;15(4):449-55. https://doi.org/10.1016/j.mib.2012.02.007.
Besteiro S, Michelin A, Poncet J,Dubremetz J-F, Lebrun M. Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion.PLoS Pathog. 2009;5(2):e1000309. https://doi.org/10.1371/journal.ppat.1000309.
Besteiro S, Dubremetz J-F, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion: The moving junction of apicomplexan parasites. Cell Microbiol. 2011;13(6):797-805. https://doi.org/10.1111/j.1462-5822.2011.01597.x.
Hines S, Mcelwain T, Buening G, Palmer G. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected cattle. Mol Biochem Parasitol. 1989;37(1):1-9. https://doi.org/10.1016/0166-6851(89)90096-0.
GoffWL, Davis WC, Palmer GH, McElwain TF, Johnson WC, Bailey JF, etal. Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infect Immun. 1988;56(9):2363-8. https://doi.org/10.1128/iai.56.9.2363-2368.1988
Johnson WC, Taus NS, Reif KE, Bohaliga GA, Kappmeyer LS, Ueti MW. Analysis of Stage-Specific Protein Expression during Babesia Bovis Development within Female Rhipicephalus Microplus. Journalof proteome research. 2017;16(3):1327-38.https://doi.org/10.1021/acs.jproteome.6b00947.
Hines SA, Palmer GH, Jasmer DP, Goff WL, McElwain TF. Immunization of cattle with recombinant Babesia bovis merozoite surface antigen-1. Infect Immun. 1995;63(1):349-52. https://doi.org/10.1128/iai.63.1.349-352.1995
Hines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol.1992;55(1-2):85-94. https://doi.org/10.1016/0166-6851(92)90129-8.
Carcy B, Précigout E, Schetters T, Gorenflot A. Genetic basis for GPI-anchor merozoite surface antigen polymorphism of Babesia and resulting antigenic diversity. Vet Parasitol. 2006;138(1-2):33-49. https://doi.org/10.1016/j.vetpar.2006.01.038.
Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7(7):493-503. https://doi.org/10.1038/nrmicro2145.
Genis AD, Mosqueda JJ, Borgonio VM, Falcón A, Alvarez A, Camacho M, etal. Phylogenetic analysis of Mexican Babesia bovis isolates using msa and ssrRNA gene sequences. Ann N Y Acad Sci. 2008;1149:121-5. https://doi.org/10.1196/annals.1428.070.
LeroithT, Brayton KA, Molloy JB, Bock RE, Hines SA, Lew AE, etal. Sequence variation and immunologic cross-reactivity among Babesia bovis merozoite surface antigen 1 proteins from vaccine strains and vaccine breakthrough isolates. Infect Immun. 2005;73(9):5388-94. https://doi.org/10.1128/IAI.73.9.5388-5394.2005.
Tattiyapong M, Sivakumar T, Takemae H, Simking P, Jittapalapong S, Igarashi I, etal. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2016;41:255-61. https://doi.org/10.1016/j.meegid.2016.04.021.
Sivakumar T, Okubo K, Igarashi I, de Silva WK, Kothalawala H, Silva SSP, etal. Genetic diversity of merozoite surface antigens in Babesia bovis detected from Sri Lankan cattle. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2013;19:134-40. https://doi.org/10.1016/j.meegid.2013.07.001.
Suarez CE, Florin-Christensen M, Hines SA, Palmer GH, Brown WC, McElwain TF. Characterization of Allelic Variation in the Babesia bovis Merozoite Surface Antigen 1 (MSA-1) Locus and Identification of a Cross-Reactive Inhibition-Sensitive MSA-1 Epitope. Infect Immun. 2000;68(12):6865-70. https://doi.org/10.1128/IAI.68.12.6865-6870.2000.
Mosqueda J.McElwainTF. Stiller D. Palmer GH. Babesia bovis Merozoite Surface Antigen 1 and Rhoptry-Associated Protein 1 Are Expressed in Sporozoites, and Specific Antibodies Inhibit Sporozoite Attachment to Erythrocytes. Infect Immun. 2002;70(3):1599-603. https://doi.org/10.1128/IAI.70.3.1599-1603.2002.
Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, etal. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol. 2000;38(4):706-18. https://doi.org/10.1046/j.1365-2958.2000.02175.x.
Hodder AN, Crewther PE, Anders RF. Specificity of the Protective Antibody Response to Apical Membrane Antigen 1. Infect Immun. 2001;69(5):3286-94. https://doi.org/10.1128/IAI.69.5.3286-3294.2001. 44. Hehl AB, Lekutis C, Grigg ME, Bradley PJ, Dubremetz J-F, Ortega-Barria E, etal. Toxoplasma gondii Homologue ofPlasmodium Apical Membrane Antigen 1 Is Involved in Invasionof Host Cells. Infect Immun. 2000;68(12):7078-86. https://doi.org/10.1128/IAI.68.12.7078-7086.2000.
Montero E, Rodriguez M, Oksov Y, Lobo CA. Babesia divergens Apical Membrane Antigen 1 and Its Interaction with the Human Red Blood Cell. Infect Immun. 2009;77(11):4783-93. https://doi.org/10.1128/IAI.00969-08.
Salama AA, Terkawi MA, Kawai S, AbouLaila M, Nayel M, Mousa A, etal. Specific antibody to a conserved region of Babesia apical membrane antigen-1 inhibited the invasion of B. bovis into the erythrocyte. Exp Parasitol. 2013;135(3):623-8. https://doi.org/10.1016/j.exppara.2013.09.017.
Remarque EJ, Faber BW, Kocken CHM, Thomas AW. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol. 2008;24(2):74-84. https://doi.org/10.1016/j.pt.2007.12.002.
Delgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PloS One. 2016;11(1):e0144764. https://doi.org/10.1371/journal.pone.0144764.
Tyler JS, Boothroyd JC. The C-terminus of Toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. PLoS Pathog. 2011;7(2):e1001282. https://doi.org/10.1371/journal.ppat.1001282.
Rittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S, etal. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. Infect Genet Evol. 2017;54:447-54. https://doi.org/10.1016/j.meegid.2017.08.009.
Polley SD, Conway DJ. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics. 2001;158(4):1505-12.
Mital J, Meissner M, Soldati D, Ward GE. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in hostcell invasion. Mol Biol Cell. 2005;16(9):4341-49. https://doi.org/10.1091/mbc.e05-04-0281.
Yap A, Azevedo MF, Gilson PR, Weiss GE, O’Neill MT, Wilson DW, etal. Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol. 2014;16(5):642-56. https://doi.org/10.1111/cmi.12287.
Bilgic HB, Hacilarlioglu S, Bakirci S, Kose O, Unlu AH, Aksulu A, etal. Comparison of protectiveness of recombinant Babesia ovis apical membrane antigen 1 and B. ovis-infected cell line as vaccines against ovine babesiosis. Ticks Tick-Borne Dis. 2020;11(1):101280. https://doi.org/10.1016/j.ttbdis.2019.101280.
Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun. 2004;72(5):2947-55. https://doi.org/10.1128/IAI.72.5.2947-2955.2004.
Gardiner DL, Spielmann T, Dixon MWA, Hawthorne PL, Ortega MR, Anderson KL, etal. CLAG9 is located in the rhoptries of Plasmodium falciparum. Parasitol Res. 2004;93(1):64-7. https://doi.org/10.1007/s00436-004-1098-4.
Kaneko O, Tsuboi T, Ling IT, Howell S, Shirano M, Tachibana M, etal. The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. Mol Biochem Parasitol. 2001;118(2):223-31. https://doi.org/10.1016/s0166-6851(01)00391-7.
Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, etal. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int. 2009;58(1):29-35. https://doi.org/10.1016/j.parint.2008.09.005.
Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL. Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol. 2009;122(4):280-8. https://doi.org/10.1016/j.exppara.2009.04.013.
Mutungi JK, Yahata K, Sakaguchi M, Kaneko O. Expression and localization of rhoptry neck protein 5 in merozoites and sporozoites of Plasmodium yoelii. Parasitol Int. 2014;63(6):794-801. https://doi.org/10.1016/j.parint.2014.07.013.
Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ. The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog. 2011;7(3):e1002007. https://doi.org/10.1371/journal.ppat.1002007.
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/475/552
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_dcae04bc
http://purl.org/redcol/resource_type/ARTREV
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE BOYACÁ
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDEBOYACA/logo.png
country_str Colombia
collection Revista Investigación en Salud Universidad de Boyacá
title Proteínas importantes para la invasión de Babesia bovis a las células huésped
spellingShingle Proteínas importantes para la invasión de Babesia bovis a las células huésped
Cuy Chaparro, Laura Esperanza
Camargo Mancipe, Anny
Gómez Rodríguez, Alida Marcela
Reyes Santofimio, César
Moreno Pérez, Darwin Andrés
Babesia bovis
Babesiosis
interacciones huésped-parásito
proteínas
control de infección
Babesia bovis
babesiosis
host-parasite interactions
proteins
infection control
Babesia bovis
babesiose
interações parasita-hospedeiro
proteínas
controle de infecção
title_short Proteínas importantes para la invasión de Babesia bovis a las células huésped
title_full Proteínas importantes para la invasión de Babesia bovis a las células huésped
title_fullStr Proteínas importantes para la invasión de Babesia bovis a las células huésped
title_full_unstemmed Proteínas importantes para la invasión de Babesia bovis a las células huésped
title_sort proteínas importantes para la invasión de babesia bovis a las células huésped
title_eng Important proteins for Babesia bovis invasion to host cells
description Introducción. La babesiosis bovina es causada por parásitos Apicomplexa del género Babesia, siendo Babesia bovis la especie asociada con cuadros clínicos más graves de la enfermedad. La invasión de B. bovis a los eritrocitos bovinos implica la interacción entre moléculas de los merozoítos del parásito con receptores de las células huésped. Por ende, conocer las proteínas involucradas en este proceso supone un importante paso para entender la biología del parásito. Objetivo. Describir las principales moléculas implicadas en el proceso de invasión de B. bovis a eritrocitos bovinos. Metodología. Se realizó una búsqueda en NCBI, Medline, LILACS y SciELO usando los términos: “Babesia bovis AND invasion process”, “MSA-1”, “RON2”, “AMA-1”, “moving junction”, “B. bovis AND Vaccine candidates”. 61 publicaciones disponibles en inglés que describen el estudio de las anteriores proteínas y su participación en la invasión los cuales han sido publicados hasta mayo 2020 se revisaron completamente. Resultados: Siendo el proceso de invasión a eritrocitos bovinos clave para la patogénesis de la babesiosis bovina, se hizo una revisión donde se encontraron 3 proteínas de B. bovis que participan en el reconocimiento e invasión a las células diana: MSA-1, AMA-1 y RON2. Sin embargo, los detalles a nivel molecular para las interacciones inter e intramoleculares aún no se han dilucidado por completo. Conclusiones. Conocer las moléculas involucradas en las interacciones parásito-hospedero permitirá comprender cómo ocurre el proceso de invasión de B. bovis a los eritrocitos y así evaluar su futura utilidad como componente de una estrategia de control efectiva contra esta parasitosis.
description_eng Introduction. Bovine babesiosis is caused by Apicomplexas parasites of the genus Babesia, Babesia bovis being the species associated with the most serious clinical conditions of the disease. B. bovis invasion into the bovine erythrocytes involves the interaction between the parasites merozoites molecules with host cell receptors. Therefore, knowing the proteins involved in the invasion process will enable understanding the parasite biology. Objective. To describe the important molecules involved in the B. bovis invasion process to bovine erythrocytes. Methodology. A search was made on NCBI, Medline, LILACS and SciELO databases using keywords as “Babesia bovis AND invasion process”, “MSA-1”, “RON2”, “AMA-1”, “moving junction”, “B. bovis AND Vaccine candidates”. 61 studies written in English describing the study for proteins that take place during invasion process which have been published until mayo were completely revised. Results. Given that the bovine erythrocyte invasion process is key for the pathogenesis of bovine babesiosis, a review was made where 3 proteins were found to be associated to the recognition and invasion processes of target cells: MSA-1, AMA-1 and RON2. However, the details at molecular level for the inter an intramolecular interaction have not yet been fully elucidated. Conclusions. Study the molecules involved in host-parasite interactions will allow understanding how the B. bovis invasion process to erythrocytes occurs and evaluating their future utility as a component of an effective control strategy for this parasitosis.
author Cuy Chaparro, Laura Esperanza
Camargo Mancipe, Anny
Gómez Rodríguez, Alida Marcela
Reyes Santofimio, César
Moreno Pérez, Darwin Andrés
author_facet Cuy Chaparro, Laura Esperanza
Camargo Mancipe, Anny
Gómez Rodríguez, Alida Marcela
Reyes Santofimio, César
Moreno Pérez, Darwin Andrés
topicspa_str_mv Babesia bovis
Babesiosis
interacciones huésped-parásito
proteínas
control de infección
topic Babesia bovis
Babesiosis
interacciones huésped-parásito
proteínas
control de infección
Babesia bovis
babesiosis
host-parasite interactions
proteins
infection control
Babesia bovis
babesiose
interações parasita-hospedeiro
proteínas
controle de infecção
topic_facet Babesia bovis
Babesiosis
interacciones huésped-parásito
proteínas
control de infección
Babesia bovis
babesiosis
host-parasite interactions
proteins
infection control
Babesia bovis
babesiose
interações parasita-hospedeiro
proteínas
controle de infecção
citationvolume 8
citationissue 1
citationedition Núm. 1 , Año 2021 : Revista Investigación en Salud Universidad de Boyacá
publisher Universidad de Boyacá
ispartofjournal Revista Investigación en Salud Universidad de Boyacá
source https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/475
language spa
format Article
rights http://creativecommons.org/licenses/by-nc/4.0
Revista Investigación en Salud Universidad de Boyacá - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129(7):S247-69. https://doi.org/10.1017/S0031182004005190
Lew-Tabor AE, Rodriguez ValleM. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick-Borne Dis. 2016;7(4):573-85. https://doi.org/10.1016/j.ttbdis.2015.12.012
Hunfeld K, Hildebrandt A, Gray J. Babesiosis: Recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219-37. https://doi.org/10.1016/j.ijpara.2008.03.001.
Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180(1-2):109-25. https://doi.org/10.1016/j.vetpar.2011.05.032.
Ishizaki T, Sivakumar T, Hayashida K, Tuvshintulga B, Igarashi I, Yokoyama N. RBC invasion and invasion-inhibition assays using free merozoites isolated after cold treatment of Babesia bovis in vitro culture. Exp Parasitol. 2016;166:10-5. https://doi.org/10.1016/j.exppara.2016.03.010.
Nava A, Venzal J, González-Acuña D, Martins T, Guglielmone A. Ticks of the Southern Cone of America. Diagnosis, Distribution, and Hosts with Taxonomy, Ecology and Sanitary Importance. Academic Press.2017. 372.
Martinsen ES, Perkins SL, Schall JJ. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol Phylogenet Evol. 2008;47(1):261-73. https://doi.org/10.1016/j.ympev.2007.11.012.
Lobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion: Curr Opin Hematol. 2012;19(3):170-5. https://doi.org/10.1097/moh.0b013e328352245a.
Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37. https://doi.org/10.1051/vetres/2009020.
Hidalgo-Ruiz M, Suarez CE, Mercado-Uriostegui MA, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, etal. Babesia bovis RON2 contains conserved B-cell epitopes that induce an invasion-blocking humoral immune response in immunized cattle. Parasit Vectors. 2018;11(1):575. https://doi.org/10.1186/s13071-018-3164-2
Kwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ. A widespread coral-infecting apicomplexan contains a plastid encoding chlorophyll biosynthesis. bioRxiv. 2018; https://doi.org/10.1101/391565
Dubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN. Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol. 1998;28(7):1007-13. https://doi.org/10.1016/S0020-7519(98)00076-9.
Yokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: Current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol. 2006;138(1-2):22-32. https://doi.org/10.1016/j.vetpar.2006.01.037.
Bargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog. septiembre de 2014;10(9):e1004273. https://doi.org/10.1371/journal.ppat.1004273.
Proellocks NI, Coppel RL, Waller KL. Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol.2010;26(6):297-304. https://doi.org/10.1016/j.pt.2010.02.012.
Tyler JS, Treeck M, Boothroyd JC. Focus on the ringleader: the role of AMA1 in apicomplexan invasion and replication. Trends Parasitol. 2011;27(9):410-20. https://doi.org/10.1016/j.pt.2011.04.002.
Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, etal. Proteomic Analysis of Rhoptry Organelles Reveals Many Novel Constituents for Host-Parasite Interactions in Toxoplasma gondii. J Biol Chem. 2005;280(40):34245-58. https://doi.org/10.1074/jbc.M504158200.
Morrissette NS, Sibley LD. Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev MMBR. 2002;66(1):21-38.https://doi.org/10.1128/MMBR.66.1.21-38.2002.
Portman N, Foster C, Walker G, Šlapeta J. Evidence of intraflagellar transport and apical complex formation in a free-living relative of the apicomplexa. Eukaryot Cell. 2014;13(1):10-20. https://doi.org/10.1128/EC.00155-13.
Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol. 1997;73(2):114-23.
Bradley PJ, Sibley LD. Rhoptries: an arsenal of secreted virulence factors. Curr Opin Microbiol. 2007;10(6):582-7. https://doi.org/10.1016/j.mib.2007.09.013.
Woehlbier U, Epp C, Hackett F, Blackman MJ, Bujard H. Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion. Malar J. 2010;9:77. https://doi.org/10.1186/1475-2875-9-77.
Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, etal. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc NatlAcad Sci U S A. 2011;108(32):13275-80. https://doi.org/10.1073/pnas.1110303108.
Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, etal. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog. 2011;7(2):e1001276. https://doi.org/10.1371/journal.ppat.1001276.
Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, Vial H, etal. The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol. 2005;7(12):1823-33. https://doi.org/10.1111/j.1462-5822.2005.00646.x.
Shen B, Sibley LD. The moving junction, a key portal to host cell invasion by apicomplexan parasites.Curr Opin Microbiol. 2012;15(4):449-55. https://doi.org/10.1016/j.mib.2012.02.007.
Besteiro S, Michelin A, Poncet J,Dubremetz J-F, Lebrun M. Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion.PLoS Pathog. 2009;5(2):e1000309. https://doi.org/10.1371/journal.ppat.1000309.
Besteiro S, Dubremetz J-F, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion: The moving junction of apicomplexan parasites. Cell Microbiol. 2011;13(6):797-805. https://doi.org/10.1111/j.1462-5822.2011.01597.x.
Hines S, Mcelwain T, Buening G, Palmer G. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected cattle. Mol Biochem Parasitol. 1989;37(1):1-9. https://doi.org/10.1016/0166-6851(89)90096-0.
GoffWL, Davis WC, Palmer GH, McElwain TF, Johnson WC, Bailey JF, etal. Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infect Immun. 1988;56(9):2363-8. https://doi.org/10.1128/iai.56.9.2363-2368.1988
Johnson WC, Taus NS, Reif KE, Bohaliga GA, Kappmeyer LS, Ueti MW. Analysis of Stage-Specific Protein Expression during Babesia Bovis Development within Female Rhipicephalus Microplus. Journalof proteome research. 2017;16(3):1327-38.https://doi.org/10.1021/acs.jproteome.6b00947.
Hines SA, Palmer GH, Jasmer DP, Goff WL, McElwain TF. Immunization of cattle with recombinant Babesia bovis merozoite surface antigen-1. Infect Immun. 1995;63(1):349-52. https://doi.org/10.1128/iai.63.1.349-352.1995
Hines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol.1992;55(1-2):85-94. https://doi.org/10.1016/0166-6851(92)90129-8.
Carcy B, Précigout E, Schetters T, Gorenflot A. Genetic basis for GPI-anchor merozoite surface antigen polymorphism of Babesia and resulting antigenic diversity. Vet Parasitol. 2006;138(1-2):33-49. https://doi.org/10.1016/j.vetpar.2006.01.038.
Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7(7):493-503. https://doi.org/10.1038/nrmicro2145.
Genis AD, Mosqueda JJ, Borgonio VM, Falcón A, Alvarez A, Camacho M, etal. Phylogenetic analysis of Mexican Babesia bovis isolates using msa and ssrRNA gene sequences. Ann N Y Acad Sci. 2008;1149:121-5. https://doi.org/10.1196/annals.1428.070.
LeroithT, Brayton KA, Molloy JB, Bock RE, Hines SA, Lew AE, etal. Sequence variation and immunologic cross-reactivity among Babesia bovis merozoite surface antigen 1 proteins from vaccine strains and vaccine breakthrough isolates. Infect Immun. 2005;73(9):5388-94. https://doi.org/10.1128/IAI.73.9.5388-5394.2005.
Tattiyapong M, Sivakumar T, Takemae H, Simking P, Jittapalapong S, Igarashi I, etal. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2016;41:255-61. https://doi.org/10.1016/j.meegid.2016.04.021.
Sivakumar T, Okubo K, Igarashi I, de Silva WK, Kothalawala H, Silva SSP, etal. Genetic diversity of merozoite surface antigens in Babesia bovis detected from Sri Lankan cattle. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2013;19:134-40. https://doi.org/10.1016/j.meegid.2013.07.001.
Suarez CE, Florin-Christensen M, Hines SA, Palmer GH, Brown WC, McElwain TF. Characterization of Allelic Variation in the Babesia bovis Merozoite Surface Antigen 1 (MSA-1) Locus and Identification of a Cross-Reactive Inhibition-Sensitive MSA-1 Epitope. Infect Immun. 2000;68(12):6865-70. https://doi.org/10.1128/IAI.68.12.6865-6870.2000.
Mosqueda J.McElwainTF. Stiller D. Palmer GH. Babesia bovis Merozoite Surface Antigen 1 and Rhoptry-Associated Protein 1 Are Expressed in Sporozoites, and Specific Antibodies Inhibit Sporozoite Attachment to Erythrocytes. Infect Immun. 2002;70(3):1599-603. https://doi.org/10.1128/IAI.70.3.1599-1603.2002.
Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, etal. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol. 2000;38(4):706-18. https://doi.org/10.1046/j.1365-2958.2000.02175.x.
Hodder AN, Crewther PE, Anders RF. Specificity of the Protective Antibody Response to Apical Membrane Antigen 1. Infect Immun. 2001;69(5):3286-94. https://doi.org/10.1128/IAI.69.5.3286-3294.2001. 44. Hehl AB, Lekutis C, Grigg ME, Bradley PJ, Dubremetz J-F, Ortega-Barria E, etal. Toxoplasma gondii Homologue ofPlasmodium Apical Membrane Antigen 1 Is Involved in Invasionof Host Cells. Infect Immun. 2000;68(12):7078-86. https://doi.org/10.1128/IAI.68.12.7078-7086.2000.
Montero E, Rodriguez M, Oksov Y, Lobo CA. Babesia divergens Apical Membrane Antigen 1 and Its Interaction with the Human Red Blood Cell. Infect Immun. 2009;77(11):4783-93. https://doi.org/10.1128/IAI.00969-08.
Salama AA, Terkawi MA, Kawai S, AbouLaila M, Nayel M, Mousa A, etal. Specific antibody to a conserved region of Babesia apical membrane antigen-1 inhibited the invasion of B. bovis into the erythrocyte. Exp Parasitol. 2013;135(3):623-8. https://doi.org/10.1016/j.exppara.2013.09.017.
Remarque EJ, Faber BW, Kocken CHM, Thomas AW. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol. 2008;24(2):74-84. https://doi.org/10.1016/j.pt.2007.12.002.
Delgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PloS One. 2016;11(1):e0144764. https://doi.org/10.1371/journal.pone.0144764.
Tyler JS, Boothroyd JC. The C-terminus of Toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. PLoS Pathog. 2011;7(2):e1001282. https://doi.org/10.1371/journal.ppat.1001282.
Rittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S, etal. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. Infect Genet Evol. 2017;54:447-54. https://doi.org/10.1016/j.meegid.2017.08.009.
Polley SD, Conway DJ. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics. 2001;158(4):1505-12.
Mital J, Meissner M, Soldati D, Ward GE. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in hostcell invasion. Mol Biol Cell. 2005;16(9):4341-49. https://doi.org/10.1091/mbc.e05-04-0281.
Yap A, Azevedo MF, Gilson PR, Weiss GE, O’Neill MT, Wilson DW, etal. Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol. 2014;16(5):642-56. https://doi.org/10.1111/cmi.12287.
Bilgic HB, Hacilarlioglu S, Bakirci S, Kose O, Unlu AH, Aksulu A, etal. Comparison of protectiveness of recombinant Babesia ovis apical membrane antigen 1 and B. ovis-infected cell line as vaccines against ovine babesiosis. Ticks Tick-Borne Dis. 2020;11(1):101280. https://doi.org/10.1016/j.ttbdis.2019.101280.
Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun. 2004;72(5):2947-55. https://doi.org/10.1128/IAI.72.5.2947-2955.2004.
Gardiner DL, Spielmann T, Dixon MWA, Hawthorne PL, Ortega MR, Anderson KL, etal. CLAG9 is located in the rhoptries of Plasmodium falciparum. Parasitol Res. 2004;93(1):64-7. https://doi.org/10.1007/s00436-004-1098-4.
Kaneko O, Tsuboi T, Ling IT, Howell S, Shirano M, Tachibana M, etal. The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. Mol Biochem Parasitol. 2001;118(2):223-31. https://doi.org/10.1016/s0166-6851(01)00391-7.
Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, etal. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int. 2009;58(1):29-35. https://doi.org/10.1016/j.parint.2008.09.005.
Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL. Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol. 2009;122(4):280-8. https://doi.org/10.1016/j.exppara.2009.04.013.
Mutungi JK, Yahata K, Sakaguchi M, Kaneko O. Expression and localization of rhoptry neck protein 5 in merozoites and sporozoites of Plasmodium yoelii. Parasitol Int. 2014;63(6):794-801. https://doi.org/10.1016/j.parint.2014.07.013.
Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ. The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog. 2011;7(3):e1002007. https://doi.org/10.1371/journal.ppat.1002007.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-02-05
date_accessioned 2021-02-05T00:00:00Z
date_available 2021-02-05T00:00:00Z
url https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/475
url_doi https://doi.org/10.24267/23897325.475
issn 2389-7325
eissn 2539-2018
doi 10.24267/23897325.475
citationstartpage 75
citationendpage 90
url2_str_mv https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/475/552
_version_ 1811200581879988224