Titulo:

Células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
.

Guardado en:

1794-2470

2462-9448

18

2020-02-10

21

33

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unicolmayor_nova_9_article_1092
record_format ojs
institution UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADCOLEGIOMAYORDECUNDINAMARCA/logo.png
country_str Colombia
collection NOVA
title Células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
spellingShingle Células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
Castellanos Hernández, Natalia
Castañeda Franco, Yessica Marcela
Caro Burgos, Paola Andrea
Sánchez Mora, Ruth Melida
C. trachomatis
Cultivo celular
Asintomático
Infección
Persistencia
Giemsa
Inmunofluorescencia
HEp-2
title_short Células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
title_full Células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
title_fullStr Células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
title_full_unstemmed Células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
title_sort células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
author Castellanos Hernández, Natalia
Castañeda Franco, Yessica Marcela
Caro Burgos, Paola Andrea
Sánchez Mora, Ruth Melida
author_facet Castellanos Hernández, Natalia
Castañeda Franco, Yessica Marcela
Caro Burgos, Paola Andrea
Sánchez Mora, Ruth Melida
topic C. trachomatis
Cultivo celular
Asintomático
Infección
Persistencia
Giemsa
Inmunofluorescencia
HEp-2
topic_facet C. trachomatis
Cultivo celular
Asintomático
Infección
Persistencia
Giemsa
Inmunofluorescencia
HEp-2
citationvolume 18
citationissue 33
citationedition Núm. 33 , Año 2020 : Enero - Junio
publisher Universidad Colegio Mayor de Cundinamarca y Universidad Nacional Abierta y a Distancia - UNAD
ispartofjournal NOVA
source https://revistas.unicolmayor.edu.co/index.php/nova/article/view/1092
language
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2020-02-10
date_accessioned 2020-02-10 00:00:00
date_available 2020-02-10 00:00:00
url https://revistas.unicolmayor.edu.co/index.php/nova/article/view/1092
url_doi https://revistas.unicolmayor.edu.co/index.php/nova/article/view/1092
issn 1794-2470
eissn 2462-9448
citationstartpage 21
citationendpage 33
url2_str_mv https://revistas.unicolmayor.edu.co/index.php/nova/article/download/1092/2593
_version_ 1811200267699355648
spelling Células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
Castellanos Hernández, Natalia
Castañeda Franco, Yessica Marcela
Caro Burgos, Paola Andrea
Sánchez Mora, Ruth Melida
C. trachomatis
Cultivo celular
Asintomático
Infección
Persistencia
Giemsa
Inmunofluorescencia
HEp-2
LGV
18
33
Núm. 33 , Año 2020 : Enero - Junio
Artículo de revista
Journal article
2020-02-10 00:00:00
2020-02-10 00:00:00
2020-02-10
application/pdf
Universidad Colegio Mayor de Cundinamarca y Universidad Nacional Abierta y a Distancia - UNAD
NOVA
1794-2470
2462-9448
https://revistas.unicolmayor.edu.co/index.php/nova/article/view/1092
https://revistas.unicolmayor.edu.co/index.php/nova/article/view/1092
https://creativecommons.org/licenses/by-nc-sa/4.0/
21
33
Ramírez N Gloria, Vera A. Víctor J, Villamil J, Luis C. Cultivos Celulares, Elemento Fundamental para la Investigación. Revista Acovez. 2018;24(1). 2. Toolan HW. Transplantable human neoplasms maintained in cortisone-treated laboratory animals: H.S. No. 1; H.Ep. No. 1; H.Ep. No. 2; H.Ep. No. 3; and H.Emb.Rh. No. 1. Cancer research. 1954;14(9):660-6. 3. Instituto nacional de seguridad y salud en el trabajo. Chlamydia trachomatis- Fichas de agentes biológicos- DB-B-C.tr-16 España2016 [cited 2017]. Available from: https://www.insst.es/documents/94886/353495/Clamydia+trachomatis+2017.pdf/471a1569-928f-4c86-938b-9afd06ee360f?version=1.0. 4. Cardona-Arias JA, Gallego-Atehortúa LH, Ríos-Osorio LA. Infección por Chlamydia trachomatis en pacientes de una institución de salud de Bogotá y Medellín, 2012-2015. Revista chilena de infectología. 2016;33:513-8. 5. MARTÍNEZ T. MA. Diagnóstico microbiológico de Chlamydia trachomatis: Estado actual de un problema. Revista chilena de infectología. 2001;18:275-84. 6. ATCC. Chlamydia trachomatis (ATCC® VR-902B™) 2019 [cited 2017 8 abril 2017]. Available from: https://www.atcc.org/en/Products/Cells_and_Microorganisms/Viruses/Chlamydia_and_Rickettsia/VR-902B.aspx. 7. Jutinico Shubach AP, Mantilla Galindo A, Sánchez Mora RM. Regulación de la familia de proteínas BCLl-2 en células infectadas con Chlamydia Trachomatis. Nova. 2015;13:83-92. 8. Engstrom P, Bergstrom M, Alfaro AC, Syam Krishnan K, Bahnan W, Almqvist F, et al. Expansion of the Chlamydia trachomatis inclusion does not require bacterial replication. International journal of medical microbiology : IJMM. 2015;305(3):378-82. 9. Pajaniradje S, Mohankumar K, Pamidimukkala R, Subramanian S, Rajagopalan R. Antiproliferative and apoptotic effects of Sesbania grandiflora leaves in human cancer cells. BioMed research international. 2014;2014:474953. 10. Jutinico Shubach A, Malagón Garzón E, Sánchez Mora R. Cultivo de la línea celular HEp-2: doblaje poblacional y coloración con Giemsa Perspectivas para el estudio de la infección con Chlamydia trachomatis. Nova. 2013;11:23-33. 11. Nans A, Saibil HR, Hayward RD. Pathogen-host reorganization during Chlamydia invasion revealed by cryo-electron tomography. Cellular microbiology. 2014;16(10):1457-72. 12. da Cunha M, Pais SV, Bugalhao JN, Mota LJ. The Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion. PloS one. 2017;12(6):e0178856. 13. Derrick T, Last AR, Burr SE, Roberts CH, Nabicassa M, Cassama E, et al. Inverse relationship between microRNA-155 and -184 expression with increasing conjunctival inflammation during ocular Chlamydia trachomatis infection. BMC infectious diseases. 2016;16:60. 14. Richard Coico. Current Protocols in Microbiology. 2006 2019. In: Wiley Microbiology & Virology [Internet]. Available from: https://www.wiley.com/en-co/Current+Protocols+in+Microbiology-p-9780471729242. 15. Vicetti Miguel RD, Henschel KJ, Duenas Lopez FC, Quispe Calla NE, Cherpes TL. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units. Journal of microbiological methods. 2015;119:79-82. 16. Ibana JA, Sherchand SP, Fontanilla FL, Nagamatsu T, Schust DJ, Quayle AJ, et al. Chlamydia trachomatis-infected cells and uninfected-bystander cells exhibit diametrically opposed responses to interferon gamma. Scientific reports. 2018;8(1):8476. 17. Becker E, Hegemann JH. All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function. MicrobiologyOpen. 2014;3(4):544-56. 18. Al-Zeer MA, Al-Younes HM, Lauster D, Abu Lubad M, Meyer TF. Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNG-inducible guanylate binding proteins. Autophagy. 2013;9(1):50-62. 19. Giakoumelou S, Wheelhouse N, Brown J, Wade J, Simitsidellis I, Gibson D, et al. Chlamydia trachomatis infection of human endometrial stromal cells induces defective decidualisation and chemokine release. Scientific reports. 2017;7(1):2001. 20. Soysa P, Jayarthne P, Ranathunga I. Water extract of Semecarpus parvifolia Thw. leaves inhibits cell proliferation and induces apoptosis on HEp-2 cells. BMC complementary and alternative medicine. 2018;18(1):78. 21. Cochrane M, Armitage CW, O'Meara CP, Beagley KW. Towards a Chlamydia trachomatis vaccine: how close are we? Future microbiology. 2010;5(12):1833-56. 22. Nogueira AT, Braun KM, Carabeo RA. Characterization of the Growth of Chlamydia trachomatis in In Vitro-Generated Stratified Epithelium. Frontiers in cellular and infection microbiology. 2017;7:438. 23. Carrera Páez LC, Pirajan Quintero ID, Urrea Suarez MC, Sanchez Mora RM, Gómez Jiménez M, Monroy Cano LA. Comparación del cultivo celular de HeLa y HEp-2: Perspectivas de estudios con Chlamydia trachomatis. Nova. 2015;13:17-29. 24. Gutiérrez DL, Sánchez Mora RM. Tratamientos alternativos de medicina tradicional para Chlamydia trachomatis , agente causal de una infección asintomática. Nova. 2018;16:65-74. 25. Sherrid AM, Hybiske K. Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells. Infection and immunity. 2017;85(5). 26. Nguyen PH, Lutter EI, Hackstadt T. Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation. PLoS pathogens. 2018;14(3):e1006911.
https://revistas.unicolmayor.edu.co/index.php/nova/article/download/1092/2593
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication